Store Notion's Pages as Vector Documents into Supabase with OpenAI

工作流概述

这是一个包含9个节点的复杂工作流,主要用于自动化处理各种任务。

工作流源代码

下载
{
  "id": "DvP6IHWymTIVg8Up",
  "meta": {
    "instanceId": "b9faf72fe0d7c3be94b3ebff0778790b50b135c336412d28fd4fca2cbbf8d1f5",
    "templateCredsSetupCompleted": true
  },
  "name": "Store Notion's Pages as Vector Documents into Supabase with OpenAI",
  "tags": [],
  "nodes": [
    {
      "id": "495609cd-4ca0-426d-8413-69e771398188",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        480,
        400
      ],
      "parameters": {
        "width": 637.1327972412109,
        "height": 1113.7434387207031,
        "content": "## Store Notion's Pages as Vector Documents into Supabase

**This workflow assumes you have a Supabase project with a table that has a vector column. If you don't have it, follow the instructions here:** [Supabase Vector Columns Guide](https://supabase.com/docs/guides/ai/vector-columns)

## Workflow Description

This workflow automates the process of storing Notion pages as vector documents in a Supabase database with a vector column. The steps are as follows:

1. **Notion Page Added Trigger**:
 - Monitors a specified Notion database for newly added pages. You can create a specific Notion database where you copy the pages you want to store in Supabase.
 - Node: `Page Added in Notion Database`

2. **Retrieve Page Content**:
 - Fetches all block content from the newly added Notion page.
 - Node: `Get Blocks Content`

3. **Filter Non-Text Content**:
 - Excludes blocks of type \"image\" and \"video\" to focus on textual content.
 - Node: `Filter - Exclude Media Content`

4. **Summarize Content**:
 - Concatenates the Notion blocks content to create a single text for embedding.
 - Node: `Summarize - Concatenate Notion's blocks content`

5. **Store in Supabase**:
 - Stores the processed documents and their embeddings into a Supabase table with a vector column.
 - Node: `Store Documents in Supabase`

6. **Generate Embeddings**:
 - Utilizes OpenAI's API to generate embeddings for the textual content.
 - Node: `Generate Text Embeddings`


7. **Create Metadata and Load Content**:
 - Loads the block content and creates associated metadata, such as page ID and block ID.
 - Node: `Load Block Content & Create Metadata`

8. **Split Content into Chunks**:
 - Divides the text into smaller chunks for easier processing and embedding generation.
 - Node: `Token Splitter`



"
      },
      "typeVersion": 1
    },
    {
      "id": "3f3e65dc-2b26-407c-87e5-52ba3b315fed",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        2200,
        760
      ],
      "parameters": {
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "6d2579b8-376f-44c3-82e8-9dc608efd98b",
      "name": "Token Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterTokenSplitter",
      "position": [
        2340,
        960
      ],
      "parameters": {
        "chunkSize": 256,
        "chunkOverlap": 30
      },
      "typeVersion": 1
    },
    {
      "id": "79b3c147-08ca-4db4-9116-958a868cbfd9",
      "name": "Notion - Page Added Trigger",
      "type": "n8n-nodes-base.notionTrigger",
      "position": [
        1180,
        520
      ],
      "parameters": {
        "simple": false,
        "pollTimes": {
          "item": [
            {
              "mode": "everyMinute"
            }
          ]
        },
        "databaseId": {
          "__rl": true,
          "mode": "list",
          "value": "",
          "cachedResultUrl": "",
          "cachedResultName": ""
        }
      },
      "typeVersion": 1
    },
    {
      "id": "e4a6f524-e3f5-4d02-949a-8523f2d21965",
      "name": "Notion - Retrieve Page Content",
      "type": "n8n-nodes-base.notion",
      "position": [
        1400,
        520
      ],
      "parameters": {
        "blockId": {
          "__rl": true,
          "mode": "url",
          "value": "={{ $json.url }}"
        },
        "resource": "block",
        "operation": "getAll",
        "returnAll": true
      },
      "typeVersion": 2.2
    },
    {
      "id": "bfebc173-8d4b-4f8f-a625-4622949dd545",
      "name": "Filter Non-Text Content",
      "type": "n8n-nodes-base.filter",
      "position": [
        1620,
        520
      ],
      "parameters": {
        "options": {},
        "conditions": {
          "options": {
            "leftValue": "",
            "caseSensitive": true,
            "typeValidation": "strict"
          },
          "combinator": "and",
          "conditions": [
            {
              "id": "e5b605e5-6d05-4bca-8f19-a859e474620f",
              "operator": {
                "type": "string",
                "operation": "notEquals"
              },
              "leftValue": "={{ $json.type }}",
              "rightValue": "image"
            },
            {
              "id": "c7415859-5ffd-4c78-b497-91a3d6303b6f",
              "operator": {
                "type": "string",
                "operation": "notEquals"
              },
              "leftValue": "={{ $json.type }}",
              "rightValue": "video"
            }
          ]
        }
      },
      "typeVersion": 2
    },
    {
      "id": "b04939f9-355a-430b-a069-b11800066313",
      "name": "Summarize - Concatenate Notion's blocks content",
      "type": "n8n-nodes-base.summarize",
      "position": [
        1920,
        520
      ],
      "parameters": {
        "options": {
          "outputFormat": "separateItems"
        },
        "fieldsToSummarize": {
          "values": [
            {
              "field": "content",
              "separateBy": "
",
              "aggregation": "concatenate"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "id": "0e64dbb5-20c1-4b90-b818-a1726aaf5112",
      "name": "Create metadata and load content",
      "type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
      "position": [
        2320,
        760
      ],
      "parameters": {
        "options": {
          "metadata": {
            "metadataValues": [
              {
                "name": "pageId",
                "value": "={{ $('Notion - Page Added Trigger').item.json.id }}"
              },
              {
                "name": "createdTime",
                "value": "={{ $('Notion - Page Added Trigger').item.json.created_time }}"
              },
              {
                "name": "pageTitle",
                "value": "={{ $('Notion - Page Added Trigger').item.json.properties.Page.title[0].text.content }}"
              }
            ]
          }
        },
        "jsonData": "={{ $('Summarize - Concatenate Notion's blocks content').item.json.concatenated_content }}",
        "jsonMode": "expressionData"
      },
      "typeVersion": 1
    },
    {
      "id": "187aba6f-eaed-4427-8d40-b9da025fb37d",
      "name": "Supabase Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreSupabase",
      "position": [
        2200,
        520
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "tableName": {
          "__rl": true,
          "mode": "list",
          "value": "",
          "cachedResultName": ""
        }
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "executionOrder": "v1"
  },
  "versionId": "77f6b6f7-d699-4a7e-b3e7-fe8a60bde7ba",
  "connections": {
    "Token Splitter": {
      "ai_textSplitter": [
        [
          {
            "node": "Create metadata and load content",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI": {
      "ai_embedding": [
        [
          {
            "node": "Supabase Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Filter Non-Text Content": {
      "main": [
        [
          {
            "node": "Summarize - Concatenate Notion's blocks content",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Notion - Page Added Trigger": {
      "main": [
        [
          {
            "node": "Notion - Retrieve Page Content",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Notion - Retrieve Page Content": {
      "main": [
        [
          {
            "node": "Filter Non-Text Content",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Create metadata and load content": {
      "ai_document": [
        [
          {
            "node": "Supabase Vector Store",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Summarize - Concatenate Notion's blocks content": {
      "main": [
        [
          {
            "node": "Supabase Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

功能特点

  • 自动检测新邮件
  • AI智能内容分析
  • 自定义分类规则
  • 批量处理能力
  • 详细的处理日志

技术分析

节点类型及作用

  • Stickynote
  • @N8N/N8N Nodes Langchain.Embeddingsopenai
  • @N8N/N8N Nodes Langchain.Textsplittertokensplitter
  • Notiontrigger
  • Notion

复杂度评估

配置难度:
★★★★☆
维护难度:
★★☆☆☆
扩展性:
★★★★☆

实施指南

前置条件

  • 有效的Gmail账户
  • n8n平台访问权限
  • Google API凭证
  • AI分类服务订阅

配置步骤

  1. 在n8n中导入工作流JSON文件
  2. 配置Gmail节点的认证信息
  3. 设置AI分类器的API密钥
  4. 自定义分类规则和标签映射
  5. 测试工作流执行
  6. 配置定时触发器(可选)

关键参数

参数名称 默认值 说明
maxEmails 50 单次处理的最大邮件数量
confidenceThreshold 0.8 分类置信度阈值
autoLabel true 是否自动添加标签

最佳实践

优化建议

  • 定期更新AI分类模型以提高准确性
  • 根据邮件量调整处理批次大小
  • 设置合理的分类置信度阈值
  • 定期清理过期的分类规则

安全注意事项

  • 妥善保管API密钥和认证信息
  • 限制工作流的访问权限
  • 定期审查处理日志
  • 启用双因素认证保护Gmail账户

性能优化

  • 使用增量处理减少重复工作
  • 缓存频繁访问的数据
  • 并行处理多个邮件分类任务
  • 监控系统资源使用情况

故障排除

常见问题

邮件未被正确分类

检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。

Gmail认证失败

确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。

调试技巧

  • 启用详细日志记录查看每个步骤的执行情况
  • 使用测试邮件验证分类逻辑
  • 检查网络连接和API服务状态
  • 逐步执行工作流定位问题节点

错误处理

工作流包含以下错误处理机制:

  • 网络超时自动重试(最多3次)
  • API错误记录和告警
  • 处理失败邮件的隔离机制
  • 异常情况下的回滚操作