Stock Q&A Workflow

工作流概述

这是一个包含17个节点的复杂工作流,主要用于自动化处理各种任务。

工作流源代码

下载
{
  "id": "tMiRJYDrXzpKysTX",
  "meta": {
    "instanceId": "2723a3a635131edfcb16103f3d4dbaadf3658e386b4762989cbf49528dccbdbd",
    "templateId": "1960"
  },
  "name": "Stock Q&A Workflow",
  "tags": [],
  "nodes": [
    {
      "id": "ec3b86be-4113-4fd5-8365-02adb67693e9",
      "name": "Embeddings OpenAI1",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1960,
        720
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "fOF5kro9BJ6KMQ7n",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "42fd8020-3861-4d0f-a7a2-70e2c35f0bed",
      "name": "On new manual Chat Message",
      "type": "@n8n/n8n-nodes-langchain.manualChatTrigger",
      "disabled": true,
      "position": [
        1620,
        240
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "a9b48d04-691e-4537-90f8-d7a4aa6153af",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        1560,
        120
      ],
      "parameters": {
        "color": 6,
        "width": 903.0896125323785,
        "height": 733.5099670584011,
        "content": "## Step 2: Setup the Q&A 
### The incoming message from the webhook is queried from the Supabase Vector Store. The response is provided in the response webhook. "
      },
      "typeVersion": 1
    },
    {
      "id": "472b4800-745a-4337-9545-163247f7e9ae",
      "name": "Retrieval QA Chain",
      "type": "@n8n/n8n-nodes-langchain.chainRetrievalQa",
      "position": [
        1880,
        240
      ],
      "parameters": {
        "query": "={{ $json.body.input }}"
      },
      "typeVersion": 1
    },
    {
      "id": "e58bd82d-abc6-44ed-8e93-ec5436126d66",
      "name": "Respond to Webhook",
      "type": "n8n-nodes-base.respondToWebhook",
      "position": [
        2280,
        240
      ],
      "parameters": {
        "options": {},
        "respondWith": "text",
        "responseBody": "={{ $json.response.text }}"
      },
      "typeVersion": 1
    },
    {
      "id": "04bbf01e-8269-47c7-897d-4ea94a1bd1c0",
      "name": "Vector Store Retriever",
      "type": "@n8n/n8n-nodes-langchain.retrieverVectorStore",
      "position": [
        2020,
        440
      ],
      "parameters": {
        "topK": 5
      },
      "typeVersion": 1
    },
    {
      "id": "feee6d68-2e0d-4d40-897e-c1d833a13bf2",
      "name": "Webhook1",
      "type": "n8n-nodes-base.webhook",
      "position": [
        1620,
        420
      ],
      "webhookId": "679f4afb-189e-4f04-9dc0-439eec2ec5f1",
      "parameters": {
        "path": "19f5499a-3083-4783-93a0-e8ed76a9f742",
        "options": {},
        "httpMethod": "POST",
        "responseMode": "responseNode"
      },
      "typeVersion": 1.1
    },
    {
      "id": "1b8d251f-7069-4d7d-b6d6-4bfa683d4ad1",
      "name": "When clicking \"Execute Workflow\"",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        280,
        260
      ],
      "parameters": {},
      "typeVersion": 1
    },
    {
      "id": "b746a7a4-ed94-4332-bf7b-65aadcf54130",
      "name": "Google Drive",
      "type": "n8n-nodes-base.googleDrive",
      "position": [
        580,
        260
      ],
      "parameters": {
        "fileId": {
          "__rl": true,
          "mode": "list",
          "value": "1LZezppYrWpMStr4qJXtoIX-Dwzvgehll",
          "cachedResultUrl": "https://drive.google.com/file/d/1LZezppYrWpMStr4qJXtoIX-Dwzvgehll/view?usp=drivesdk",
          "cachedResultName": "crowdstrike.pdf"
        },
        "options": {},
        "operation": "download"
      },
      "credentials": {
        "googleDriveOAuth2Api": {
          "id": "1tsDIpjUaKbXy0be",
          "name": "Google Drive account"
        }
      },
      "typeVersion": 3
    },
    {
      "id": "83a7d470-f934-436d-ba3f-1ae7c776f5a5",
      "name": "Binary to Document",
      "type": "@n8n/n8n-nodes-langchain.documentBinaryInputLoader",
      "position": [
        860,
        480
      ],
      "parameters": {
        "loader": "pdfLoader",
        "options": {}
      },
      "typeVersion": 1
    },
    {
      "id": "b52b4a90-99a1-49cc-a6f0-7551d6754496",
      "name": "Recursive Character Text Splitter",
      "type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
      "position": [
        860,
        640
      ],
      "parameters": {
        "options": {},
        "chunkSize": 3000,
        "chunkOverlap": 200
      },
      "typeVersion": 1
    },
    {
      "id": "b525e130-2029-4f55-a603-1fdc05a19c17",
      "name": "Embeddings OpenAI",
      "type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
      "position": [
        1160,
        480
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "fOF5kro9BJ6KMQ7n",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "5358c53f-55f9-431d-8956-c6bae7ad25bc",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        540,
        120
      ],
      "parameters": {
        "color": 6,
        "width": 772.0680602743597,
        "height": 732.3675002130781,
        "content": "## Step 1: Upserting the PDF
### Fetch file from Google Drive, split it into chunks and insert into Supabase index

"
      },
      "typeVersion": 1
    },
    {
      "id": "fb91e2da-0eeb-47a5-aa49-65bf56986857",
      "name": "Qdrant Vector Store",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        940,
        260
      ],
      "parameters": {
        "mode": "insert",
        "options": {},
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "=crowd"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "U5CpjAgFeXziP3I1",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "89e14837-d1fc-4b1e-9ebc-7cf3e7fd9a70",
      "name": "Qdrant Vector Store1",
      "type": "@n8n/n8n-nodes-langchain.vectorStoreQdrant",
      "position": [
        1980,
        600
      ],
      "parameters": {
        "qdrantCollection": {
          "__rl": true,
          "mode": "id",
          "value": "={{ $json.body.company }}"
        }
      },
      "credentials": {
        "qdrantApi": {
          "id": "U5CpjAgFeXziP3I1",
          "name": "QdrantApi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "c619245b-5ea0-4354-974d-21ec6b8efa93",
      "name": "OpenAI Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
      "position": [
        1880,
        460
      ],
      "parameters": {
        "options": {}
      },
      "credentials": {
        "openAiApi": {
          "id": "fOF5kro9BJ6KMQ7n",
          "name": "OpenAi account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "e4aa780d-8069-4308-a61f-82ed876af71a",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -560,
        120
      ],
      "parameters": {
        "color": 6,
        "width": 710.9124489067698,
        "height": 726.4452519516944,
        "content": "## Start here: Step-by Step Youtube Tutorial :star:

[![Building an AI Crew to Analyze Financial Data with CrewAI and n8n](https://img.youtube.com/vi/pMvizUx5n1g/sddefault.jpg)](https://www.youtube.com/watch?v=pMvizUx5n1g)
"
      },
      "typeVersion": 1
    }
  ],
  "active": true,
  "pinData": {},
  "settings": {},
  "versionId": "463aec94-26a6-436d-8732-fc01d637c6ae",
  "connections": {
    "Webhook1": {
      "main": [
        [
          {
            "node": "Retrieval QA Chain",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Google Drive": {
      "main": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "OpenAI Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Retrieval QA Chain",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Binary to Document": {
      "ai_document": [
        [
          {
            "node": "Qdrant Vector Store",
            "type": "ai_document",
            "index": 0
          }
        ]
      ]
    },
    "Embeddings OpenAI1": {
      "ai_embedding": [
        [
          {
            "node": "Qdrant Vector Store1",
            "type": "ai_embedding",
            "index": 0
          }
        ]
      ]
    },
    "Retrieval QA Chain": {
      "main": [
        [
          {
            "node": "Respond to Webhook",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Qdrant Vector Store1": {
      "ai_vectorStore": [
        [
          {
            "node": "Vector Store Retriever",
            "type": "ai_vectorStore",
            "index": 0
          }
        ]
      ]
    },
    "Vector Store Retriever": {
      "ai_retriever": [
        [
          {
            "node": "Retrieval QA Chain",
            "type": "ai_retriever",
            "index": 0
          }
        ]
      ]
    },
    "On new manual Chat Message": {
      "main": [
        [
          {
            "node": "Retrieval QA Chain",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "When clicking \"Execute Workflow\"": {
      "main": [
        [
          {
            "node": "Google Drive",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Recursive Character Text Splitter": {
      "ai_textSplitter": [
        [
          {
            "node": "Binary to Document",
            "type": "ai_textSplitter",
            "index": 0
          }
        ]
      ]
    }
  }
}

功能特点

  • 自动检测新邮件
  • AI智能内容分析
  • 自定义分类规则
  • 批量处理能力
  • 详细的处理日志

技术分析

节点类型及作用

  • @N8N/N8N Nodes Langchain.Embeddingsopenai
  • @N8N/N8N Nodes Langchain.Manualchattrigger
  • Stickynote
  • @N8N/N8N Nodes Langchain.Chainretrievalqa
  • Respondtowebhook

复杂度评估

配置难度:
★★★★☆
维护难度:
★★☆☆☆
扩展性:
★★★★☆

实施指南

前置条件

  • 有效的Gmail账户
  • n8n平台访问权限
  • Google API凭证
  • AI分类服务订阅

配置步骤

  1. 在n8n中导入工作流JSON文件
  2. 配置Gmail节点的认证信息
  3. 设置AI分类器的API密钥
  4. 自定义分类规则和标签映射
  5. 测试工作流执行
  6. 配置定时触发器(可选)

关键参数

参数名称 默认值 说明
maxEmails 50 单次处理的最大邮件数量
confidenceThreshold 0.8 分类置信度阈值
autoLabel true 是否自动添加标签

最佳实践

优化建议

  • 定期更新AI分类模型以提高准确性
  • 根据邮件量调整处理批次大小
  • 设置合理的分类置信度阈值
  • 定期清理过期的分类规则

安全注意事项

  • 妥善保管API密钥和认证信息
  • 限制工作流的访问权限
  • 定期审查处理日志
  • 启用双因素认证保护Gmail账户

性能优化

  • 使用增量处理减少重复工作
  • 缓存频繁访问的数据
  • 并行处理多个邮件分类任务
  • 监控系统资源使用情况

故障排除

常见问题

邮件未被正确分类

检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。

Gmail认证失败

确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。

调试技巧

  • 启用详细日志记录查看每个步骤的执行情况
  • 使用测试邮件验证分类逻辑
  • 检查网络连接和API服务状态
  • 逐步执行工作流定位问题节点

错误处理

工作流包含以下错误处理机制:

  • 网络超时自动重试(最多3次)
  • API错误记录和告警
  • 处理失败邮件的隔离机制
  • 异常情况下的回滚操作