rss-telegram

工作流概述

这是一个包含18个节点的复杂工作流,主要用于自动化处理各种任务。

工作流源代码

下载
{
  "id": "3",
  "name": "rss-telegram",
  "nodes": [
    {
      "name": "SplitInBatches",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        480,
        220
      ],
      "parameters": {
        "batchSize": 1
      },
      "typeVersion": 1
    },
    {
      "name": "Function",
      "type": "n8n-nodes-base.function",
      "position": [
        610,
        220
      ],
      "parameters": {
        "functionCode": "const staticData = getWorkflowStaticData('global');

// Access its data
const oldlink = staticData.oldlink;

items[0].json.oldlink = oldlink || \"\";

// Update its data
staticData.oldlink = items[0].json.link;

return items;"
      },
      "typeVersion": 1
    },
    {
      "name": "Cron1",
      "type": "n8n-nodes-base.cron",
      "position": [
        180,
        290
      ],
      "parameters": {
        "triggerTimes": {
          "item": [
            {
              "mode": "everyMinute"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "name": "是否重复",
      "type": "n8n-nodes-base.if",
      "notes": "判断链接是否相同",
      "position": [
        750,
        220
      ],
      "parameters": {
        "conditions": {
          "string": [
            {
              "value1": "={{$node[\"Function\"].data[\"oldlink\"]}}",
              "value2": "={{$node[\"Function\"].data[\"link\"]}}"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "name": "写入图片的属性",
      "type": "n8n-nodes-base.function",
      "position": [
        910,
        220
      ],
      "parameters": {
        "functionCode": "function imgList(items) {
  let imgReg = /<img.*?(?:>|\/>)/gi //匹配图片中的img标签
  let srcReg = /src=[\'\\"]?([^\'\\"]*)[\'\\"]?/i // 匹配图片中的src
  let str = items[0].json.content
  let arr = str.match(imgReg)  //筛选出所有的img
  let srcArr = []
  if(arr !== null){
     for (let i = 0; i < arr.length; i++) {
          let src = arr[i].match(srcReg)
          // 获取图片地址
          srcArr.push(src[1])
      }
        items[0].json.arrlength = arr.length;
        items[0].json.imgList = srcArr;
   } else {
        items[0].json.arrlength = 0;
   }
   
 }
imgList(items)
return items;"
      },
      "typeVersion": 1
    },
    {
      "name": "图片数量判断",
      "type": "n8n-nodes-base.if",
      "position": [
        1060,
        220
      ],
      "parameters": {
        "conditions": {
          "number": [
            {
              "value1": "={{$node[\"写入图片的属性\"].data[\"arrlength\"]}}",
              "value2": 1,
              "operation": "equal"
            }
          ],
          "string": [],
          "boolean": []
        }
      },
      "typeVersion": 1
    },
    {
      "name": "一张图片",
      "type": "n8n-nodes-base.telegram",
      "position": [
        1270,
        80
      ],
      "parameters": {
        "file": "={{$node[\"图片数量判断\"].data[\"imgList\"][0]}}",
        "chatId": "-1001314058276",
        "operation": "sendPhoto",
        "additionalFields": {
          "caption": "={{$node[\"图片数量判断\"].data[\"contentSnippet\"]}}"
        }
      },
      "credentials": {
        "telegramApi": "lataimei"
      },
      "typeVersion": 1
    },
    {
      "name": "其他状况",
      "type": "n8n-nodes-base.telegram",
      "notes": "无图片",
      "position": [
        1270,
        230
      ],
      "parameters": {
        "text": "={{$node[\"图片数量判断\"].data[\"contentSnippet\"]}} {{$node[\"图片数量判断\"].data[\"link\"]}}",
        "chatId": "-1001314058276",
        "additionalFields": {
          "parse_mode": "HTML",
          "disable_web_page_preview": true
        }
      },
      "credentials": {
        "telegramApi": "lataimei"
      },
      "typeVersion": 1
    },
    {
      "name": "NaN",
      "type": "n8n-nodes-base.function",
      "position": [
        910,
        370
      ],
      "parameters": {
        "functionCode": "function imgList(items) {
  let imgReg = /<img.*?(?:>|\/>)/gi //匹配图片中的img标签
  let srcReg = /src=[\'\\"]?([^\'\\"]*)[\'\\"]?/i // 匹配图片中的src
  let str = items[0].json.content
  let arr = str.match(imgReg)  //筛选出所有的img
  let srcArr = []
  if(arr !== null){
     for (let i = 0; i < arr.length; i++) {
          let src = arr[i].match(srcReg)
          // 获取图片地址
          srcArr.push(src[1])
      }
        items[0].json.arrlength = arr.length;
        items[0].json.imgList = srcArr;
   } else {
        items[0].json.arrlength = 0;
   }
   
 }
imgList(items)
return items;"
      },
      "typeVersion": 1
    },
    {
      "name": "SplitInBatches1",
      "type": "n8n-nodes-base.splitInBatches",
      "position": [
        480,
        370
      ],
      "parameters": {
        "batchSize": 1
      },
      "typeVersion": 1
    },
    {
      "name": "Function1",
      "type": "n8n-nodes-base.function",
      "position": [
        610,
        370
      ],
      "parameters": {
        "functionCode": "const staticData = getWorkflowStaticData('global');

// Access its data
const tsaioldlink = staticData.tsaioldlink;

items[0].json.tsaioldlink = tsaioldlink || \"\";

// Update its data
staticData.tsaioldlink = items[0].json.link;

return items;"
      },
      "typeVersion": 1
    },
    {
      "name": "IF",
      "type": "n8n-nodes-base.if",
      "position": [
        750,
        370
      ],
      "parameters": {
        "conditions": {
          "string": [
            {
              "value1": "={{$node[\"Function1\"].data[\"tsaioldlink\"]}}",
              "value2": "={{$node[\"Function1\"].data[\"link\"]}}"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "name": "IF1",
      "type": "n8n-nodes-base.if",
      "position": [
        1060,
        370
      ],
      "parameters": {
        "conditions": {
          "number": [
            {
              "value1": 1,
              "value2": "=0",
              "operation": "equal"
            }
          ]
        }
      },
      "typeVersion": 1
    },
    {
      "name": "send",
      "type": "n8n-nodes-base.telegram",
      "notes": "无图片",
      "position": [
        1270,
        380
      ],
      "parameters": {
        "file": "={{$node[\"IF1\"].data[\"imgList\"][0]}}",
        "chatId": "-1001499587010",
        "operation": "sendPhoto",
        "additionalFields": {
          "caption": "={{$node[\"IF1\"].data[\"contentSnippet\"]}}"
        }
      },
      "credentials": {
        "telegramApi": "lataimei"
      },
      "typeVersion": 1
    },
    {
      "name": "instagram rss",
      "type": "n8n-nodes-base.rssFeedRead",
      "position": [
        360,
        370
      ],
      "parameters": {
        "url": "=https://rsshub985.herokuapp.com/instagram/user/tsai_ingwen/"
      },
      "typeVersion": 1
    },
    {
      "name": "weibo rss",
      "type": "n8n-nodes-base.rssFeedRead",
      "position": [
        360,
        220
      ],
      "parameters": {
        "url": "=https://rsshub985.herokuapp.com/weibo/user/5721376081"
      },
      "typeVersion": 1
    },
    {
      "name": "Telegram",
      "type": "n8n-nodes-base.telegram",
      "position": [
        1270,
        530
      ],
      "parameters": {
        "file": "={{$node[\"IF1\"].data[\"imgList\"][0]}}",
        "chatId": "-1001499587010",
        "operation": "sendPhoto",
        "additionalFields": {
          "caption": "={{$node[\"IF1\"].data[\"contentSnippet\"]}} {{$node[\"IF1\"].data[\"link\"]}}"
        }
      },
      "credentials": {
        "telegramApi": "lataimei"
      },
      "typeVersion": 1
    },
    {
      "name": "test",
      "type": "n8n-nodes-base.manualTrigger",
      "position": [
        180,
        130
      ],
      "parameters": {},
      "typeVersion": 1
    }
  ],
  "active": true,
  "settings": {},
  "connections": {
    "IF": {
      "main": [
        [],
        [
          {
            "node": "NaN",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "IF1": {
      "main": [
        [
          {
            "node": "send",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "Telegram",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "NaN": {
      "main": [
        [
          {
            "node": "IF1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "test": {
      "main": [
        [
          {
            "node": "instagram rss",
            "type": "main",
            "index": 0
          },
          {
            "node": "weibo rss",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Cron1": {
      "main": [
        [
          {
            "node": "weibo rss",
            "type": "main",
            "index": 0
          },
          {
            "node": "instagram rss",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Function": {
      "main": [
        [
          {
            "node": "是否重复",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Function1": {
      "main": [
        [
          {
            "node": "IF",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "weibo rss": {
      "main": [
        [
          {
            "node": "SplitInBatches",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "是否重复": {
      "main": [
        [],
        [
          {
            "node": "写入图片的属性",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "instagram rss": {
      "main": [
        [
          {
            "node": "SplitInBatches1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "SplitInBatches": {
      "main": [
        [
          {
            "node": "Function",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "SplitInBatches1": {
      "main": [
        [
          {
            "node": "Function1",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "图片数量判断": {
      "main": [
        [
          {
            "node": "一张图片",
            "type": "main",
            "index": 0
          }
        ],
        [
          {
            "node": "其他状况",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "写入图片的属性": {
      "main": [
        [
          {
            "node": "图片数量判断",
            "type": "main",
            "index": 0
          }
        ]
      ]
    }
  }
}

功能特点

  • 自动检测新邮件
  • AI智能内容分析
  • 自定义分类规则
  • 批量处理能力
  • 详细的处理日志

技术分析

节点类型及作用

  • Splitinbatches
  • Function
  • Cron
  • If
  • Telegram

复杂度评估

配置难度:
★★★★☆
维护难度:
★★☆☆☆
扩展性:
★★★★☆

实施指南

前置条件

  • 有效的Gmail账户
  • n8n平台访问权限
  • Google API凭证
  • AI分类服务订阅

配置步骤

  1. 在n8n中导入工作流JSON文件
  2. 配置Gmail节点的认证信息
  3. 设置AI分类器的API密钥
  4. 自定义分类规则和标签映射
  5. 测试工作流执行
  6. 配置定时触发器(可选)

关键参数

参数名称 默认值 说明
maxEmails 50 单次处理的最大邮件数量
confidenceThreshold 0.8 分类置信度阈值
autoLabel true 是否自动添加标签

最佳实践

优化建议

  • 定期更新AI分类模型以提高准确性
  • 根据邮件量调整处理批次大小
  • 设置合理的分类置信度阈值
  • 定期清理过期的分类规则

安全注意事项

  • 妥善保管API密钥和认证信息
  • 限制工作流的访问权限
  • 定期审查处理日志
  • 启用双因素认证保护Gmail账户

性能优化

  • 使用增量处理减少重复工作
  • 缓存频繁访问的数据
  • 并行处理多个邮件分类任务
  • 监控系统资源使用情况

故障排除

常见问题

邮件未被正确分类

检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。

Gmail认证失败

确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。

调试技巧

  • 启用详细日志记录查看每个步骤的执行情况
  • 使用测试邮件验证分类逻辑
  • 检查网络连接和API服务状态
  • 逐步执行工作流定位问题节点

错误处理

工作流包含以下错误处理机制:

  • 网络超时自动重试(最多3次)
  • API错误记录和告警
  • 处理失败邮件的隔离机制
  • 异常情况下的回滚操作