Chat with Google Sheet
工作流概述
这是一个包含19个节点的复杂工作流,主要用于自动化处理各种任务。
工作流源代码
{
"id": "ZVUQL1bUQ8gBCZTl",
"meta": {
"instanceId": "23e6ce638471979c8a2c72a9fb50e44f4f2bfd5a9fc2f5b7f5c842b9abeb9393"
},
"name": "Chat with Google Sheet",
"tags": [],
"nodes": [
{
"id": "89af21df-1125-4df6-9d43-a643e02bb53f",
"name": "Execute Workflow Trigger",
"type": "n8n-nodes-base.executeWorkflowTrigger",
"position": [
540,
1240
],
"parameters": {},
"typeVersion": 1
},
{
"id": "f571d0cc-eb43-46c9-bdd5-45abc51dfbe7",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
461.9740563285368,
970.616715060075
],
"parameters": {
"color": 7,
"width": 1449.2963504228514,
"height": 612.0936015224503,
"content": "### Sub-workflow: Custom tool
This can be called by the agent above. It returns three different types of data from the Google Sheet, which can be used together for more complex queries without returning the whole sheet (which might be too big for GPT to handle)"
},
"typeVersion": 1
},
{
"id": "8761e314-c1f2-4edd-88ea-bfeb02dc8f1a",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
460,
460
],
"parameters": {
"color": 7,
"width": 927.5,
"height": 486.5625,
"content": "### Main workflow: AI agent using custom tool"
},
"typeVersion": 1
},
{
"id": "e793b816-68d9-42ef-b9b0-6fe22aa375e8",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
300,
540
],
"parameters": {
"width": 185.9375,
"height": 183.85014518022527,
"content": "## Try me out
Click the 'Chat' button at the bottom and enter:
_Which is our biggest customer?_"
},
"typeVersion": 1
},
{
"id": "f895d926-0f70-415b-9492-c3ecf186e761",
"name": "Get Google sheet contents",
"type": "n8n-nodes-base.googleSheets",
"position": [
980,
1240
],
"parameters": {
"options": {},
"sheetName": {
"__rl": true,
"mode": "url",
"value": "={{ $json.sheetUrl }}"
},
"documentId": {
"__rl": true,
"mode": "url",
"value": "={{ $json.sheetUrl }}"
}
},
"credentials": {
"googleSheetsOAuth2Api": {
"id": "cTLaIZBSFJlHuZNs",
"name": "Google Sheets account"
}
},
"typeVersion": 4.2
},
{
"id": "daca1624-6c35-473a-bf3a-5fa0686a0a62",
"name": "Set Google Sheet URL",
"type": "n8n-nodes-base.set",
"position": [
760,
1240
],
"parameters": {
"fields": {
"values": [
{
"name": "sheetUrl",
"stringValue": "https://docs.google.com/spreadsheets/d/1GjFBV8HpraNWG_JyuaQAgTb3zUGguh0S_25nO0CMd8A/edit#gid=736425281"
}
]
},
"options": {}
},
"typeVersion": 3.2
},
{
"id": "68edca41-0196-47d8-9378-31fed0a70918",
"name": "Get column names",
"type": "n8n-nodes-base.set",
"position": [
1460,
1060
],
"parameters": {
"fields": {
"values": [
{
"name": "response",
"stringValue": "={{ Object.keys($json) }}"
}
]
},
"include": "none",
"options": {}
},
"executeOnce": true,
"typeVersion": 3.2
},
{
"id": "7a9dea08-f9e9-4139-842a-9066a9cf04ea",
"name": "Prepare output",
"type": "n8n-nodes-base.code",
"position": [
1720,
1240
],
"parameters": {
"jsCode": "return {
'response': JSON.stringify($input.all().map(x => x.json))
}"
},
"typeVersion": 2
},
{
"id": "616eebc5-5c5c-4fa1-b13f-61a477742c72",
"name": "List columns tool",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
940,
780
],
"parameters": {
"name": "list_columns",
"fields": {
"values": [
{
"name": "operation",
"stringValue": "column_names"
}
]
},
"workflowId": "={{ $workflow.id }}",
"description": "=List all column names in customer data
Call this tool to find out what data is available for each customer. It should be called first at the beginning to understand which columns are available for querying."
},
"typeVersion": 1
},
{
"id": "891ad3a8-72f0-45ad-8777-1647a7342c00",
"name": "Get customer tool",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
1220,
780
],
"parameters": {
"name": "get_customer",
"fields": {
"values": [
{
"name": "operation",
"stringValue": "row"
}
]
},
"workflowId": "={{ $workflow.id }}",
"description": "=Get all columns for a given customer
The input should be a stringified row number of the customer to fetch; only single string inputs are allowed. Returns a JSON object with all the column names and their values."
},
"typeVersion": 1
},
{
"id": "0f3ca6ff-fc01-4f33-b1a7-cb82a0ec5c88",
"name": "Get column values tool",
"type": "@n8n/n8n-nodes-langchain.toolWorkflow",
"position": [
1080,
780
],
"parameters": {
"name": "column_values",
"fields": {
"values": [
{
"name": "operation",
"stringValue": "column_values"
}
]
},
"workflowId": "={{ $workflow.id }}",
"description": "=Get the specified column value for all customers
Use this tool to find out which customers have a certain value for a given column. Returns an array of JSON objects, one per customer. Each JSON object includes the column being requested plus the row_number column. Input should be a single string representing the name of the column to fetch.
"
},
"typeVersion": 1
},
{
"id": "deef6eb4-2a11-4490-ad56-bc1ea9077843",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
900,
740.8693557231958
],
"parameters": {
"color": 7,
"width": 432.3271051132649,
"height": 179.21380662202682,
"content": "These tools all call the sub-workflow below"
},
"typeVersion": 1
},
{
"id": "94e4dbe5-dc41-4879-bffc-ec8f5341f3b5",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
723,
1172
],
"parameters": {
"width": 179.99762227826224,
"height": 226.64416053838073,
"content": "Change the URL of the Google Sheet here"
},
"typeVersion": 1
},
{
"id": "dbb887f0-93a7-466e-9c9f-8aa4e7da935d",
"name": "Prepare column data",
"type": "n8n-nodes-base.set",
"position": [
1460,
1240
],
"parameters": {
"fields": {
"values": [
{
"name": "={{ $('Execute Workflow Trigger').item.json.query }}",
"stringValue": "={{ $json[$('Execute Workflow Trigger').item.json.query] }}"
},
{
"name": "row_number",
"stringValue": "={{ $json.row_number }}"
}
]
},
"include": "none",
"options": {}
},
"typeVersion": 3.2
},
{
"id": "041d32ca-e59a-4b67-a3e6-4e2f19e3de72",
"name": "Filter",
"type": "n8n-nodes-base.filter",
"position": [
1460,
1400
],
"parameters": {
"options": {
"looseTypeValidation": true
},
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "loose"
},
"combinator": "and",
"conditions": [
{
"id": "bf712098-97e4-42cb-8e08-2ee32d19d3e7",
"operator": {
"type": "number",
"operation": "equals"
},
"leftValue": "={{ $json.row_number }}",
"rightValue": "={{ $('Execute Workflow Trigger').item.json.query }}"
}
]
}
},
"typeVersion": 2,
"alwaysOutputData": true
},
{
"id": "69b9e70a-9104-4731-9f16-8324a3f7e423",
"name": "Check operation",
"type": "n8n-nodes-base.switch",
"position": [
1200,
1240
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "col names",
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"operator": {
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $('Execute Workflow Trigger').item.json.operation }}",
"rightValue": "column_names"
}
]
},
"renameOutput": true
},
{
"outputKey": "col values",
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "b7968ce7-0d20-43d0-bcca-7b66e0aec715",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $('Execute Workflow Trigger').item.json.operation }}",
"rightValue": "column_values"
}
]
},
"renameOutput": true
},
{
"outputKey": "rows",
"conditions": {
"options": {
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "de3bb9b5-edc6-4448-839e-eda07b72144a",
"operator": {
"name": "filter.operator.equals",
"type": "string",
"operation": "equals"
},
"leftValue": "={{ $('Execute Workflow Trigger').item.json.operation }}",
"rightValue": "row"
}
]
},
"renameOutput": true
}
]
},
"options": {}
},
"typeVersion": 3
},
{
"id": "d955e499-5a3e-45a3-9fc8-266e2f687ecc",
"name": "OpenAI Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
800,
780
],
"parameters": {
"model": "gpt-3.5-turbo-0125",
"options": {
"temperature": 0
}
},
"credentials": {
"openAiApi": {
"id": "58qWzMjeNE8GjMmI",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "28fbda0b-1e01-4f59-af5b-fe02eba899b1",
"name": "Chat Trigger",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
620,
560
],
"webhookId": "2b9d9c42-adf4-425d-b0a5-e4f60c750e63",
"parameters": {},
"typeVersion": 1
},
{
"id": "c89614f4-d8b1-4f7b-9e7c-856e3f89eadb",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
900,
560
],
"parameters": {
"agent": "reActAgent",
"options": {
"suffix": "Begin! Use `list_columns` tool first to determine which columns are available.
Question: {input}
Thought:{agent_scratchpad}",
"returnIntermediateSteps": false
}
},
"typeVersion": 1.3
}
],
"active": false,
"pinData": {
"Execute Workflow Trigger": [
{
"json": {
"query": "222",
"operation": "row"
}
}
]
},
"settings": {
"executionOrder": "v1"
},
"versionId": "94885609-92bb-498c-9628-35d9044593e7",
"connections": {
"Filter": {
"main": [
[
{
"node": "Prepare output",
"type": "main",
"index": 0
}
]
]
},
"Chat Trigger": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Check operation": {
"main": [
[
{
"node": "Get column names",
"type": "main",
"index": 0
}
],
[
{
"node": "Prepare column data",
"type": "main",
"index": 0
}
],
[
{
"node": "Filter",
"type": "main",
"index": 0
}
]
]
},
"Get column names": {
"main": [
[
{
"node": "Prepare output",
"type": "main",
"index": 0
}
]
]
},
"Get customer tool": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"List columns tool": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Prepare column data": {
"main": [
[
{
"node": "Prepare output",
"type": "main",
"index": 0
}
]
]
},
"Set Google Sheet URL": {
"main": [
[
{
"node": "Get Google sheet contents",
"type": "main",
"index": 0
}
]
]
},
"Get column values tool": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Execute Workflow Trigger": {
"main": [
[
{
"node": "Set Google Sheet URL",
"type": "main",
"index": 0
}
]
]
},
"Get Google sheet contents": {
"main": [
[
{
"node": "Check operation",
"type": "main",
"index": 0
}
]
]
}
}
}
功能特点
- 自动检测新邮件
- AI智能内容分析
- 自定义分类规则
- 批量处理能力
- 详细的处理日志
技术分析
节点类型及作用
- Executeworkflowtrigger
- Stickynote
- Googlesheets
- Set
- Code
复杂度评估
配置难度:
维护难度:
扩展性:
实施指南
前置条件
- 有效的Gmail账户
- n8n平台访问权限
- Google API凭证
- AI分类服务订阅
配置步骤
- 在n8n中导入工作流JSON文件
- 配置Gmail节点的认证信息
- 设置AI分类器的API密钥
- 自定义分类规则和标签映射
- 测试工作流执行
- 配置定时触发器(可选)
关键参数
| 参数名称 | 默认值 | 说明 |
|---|---|---|
| maxEmails | 50 | 单次处理的最大邮件数量 |
| confidenceThreshold | 0.8 | 分类置信度阈值 |
| autoLabel | true | 是否自动添加标签 |
最佳实践
优化建议
- 定期更新AI分类模型以提高准确性
- 根据邮件量调整处理批次大小
- 设置合理的分类置信度阈值
- 定期清理过期的分类规则
安全注意事项
- 妥善保管API密钥和认证信息
- 限制工作流的访问权限
- 定期审查处理日志
- 启用双因素认证保护Gmail账户
性能优化
- 使用增量处理减少重复工作
- 缓存频繁访问的数据
- 并行处理多个邮件分类任务
- 监控系统资源使用情况
故障排除
常见问题
邮件未被正确分类
检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。
Gmail认证失败
确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。
调试技巧
- 启用详细日志记录查看每个步骤的执行情况
- 使用测试邮件验证分类逻辑
- 检查网络连接和API服务状态
- 逐步执行工作流定位问题节点
错误处理
工作流包含以下错误处理机制:
- 网络超时自动重试(最多3次)
- API错误记录和告警
- 处理失败邮件的隔离机制
- 异常情况下的回滚操作