Build Custom AI Agent with LangChain & Gemini (Self-Hosted)

工作流概述

这是一个包含9个节点的复杂工作流,主要用于自动化处理各种任务。

工作流源代码

下载
{
  "id": "yCIEiv9QUHP8pNfR",
  "meta": {
    "instanceId": "f29695a436689357fd2dcb55d528b0b528d2419f53613c68c6bf909a92493614",
    "templateCredsSetupCompleted": true
  },
  "name": "Build Custom AI Agent with LangChain & Gemini (Self-Hosted)",
  "tags": [
    {
      "id": "7M5ZpGl3oWuorKpL",
      "name": "share",
      "createdAt": "2025-03-26T01:17:15.342Z",
      "updatedAt": "2025-03-26T01:17:15.342Z"
    }
  ],
  "nodes": [
    {
      "id": "8bd5382d-f302-4e58-b377-7fc5a22ef994",
      "name": "When chat message received",
      "type": "@n8n/n8n-nodes-langchain.chatTrigger",
      "position": [
        -220,
        0
      ],
      "webhookId": "b8a5d72c-4172-40e8-b429-d19c2cd6ce54",
      "parameters": {
        "public": true,
        "options": {
          "responseMode": "lastNode",
          "allowedOrigins": "*",
          "loadPreviousSession": "memory"
        },
        "initialMessages": ""
      },
      "typeVersion": 1.1
    },
    {
      "id": "6ae8a247-4077-4569-9e2c-bb68bcecd044",
      "name": "Google Gemini Chat Model",
      "type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
      "position": [
        80,
        240
      ],
      "parameters": {
        "options": {
          "temperature": 0.7,
          "safetySettings": {
            "values": [
              {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "threshold": "BLOCK_NONE"
              }
            ]
          }
        },
        "modelName": "models/gemini-2.0-flash-exp"
      },
      "credentials": {
        "googlePalmApi": {
          "id": "UEjKMw0oqBTAdCWJ",
          "name": "Google Gemini(PaLM) Api account"
        }
      },
      "typeVersion": 1
    },
    {
      "id": "bbe6dcfa-430f-43f9-b0e9-3cf751b98818",
      "name": "Sticky Note",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        380,
        -240
      ],
      "parameters": {
        "width": 260,
        "height": 220,
        "content": "👇 **Prompt Engineering**
   - Define agent personality and conversation structure in the `Construct & Execute LLM Prompt` node's template variable  
   - ⚠️ Template must preserve `{chat_history}` and `{input}` placeholders for proper LangChain operation  "
      },
      "typeVersion": 1
    },
    {
      "id": "892a431a-6ddf-47fc-8517-1928ee99c95b",
      "name": "Store conversation history",
      "type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
      "position": [
        280,
        240
      ],
      "parameters": {},
      "notesInFlow": false,
      "typeVersion": 1.3
    },
    {
      "id": "f9a22dbf-cac7-4d70-85b3-50c44a2015d5",
      "name": "Construct & Execute LLM Prompt",
      "type": "@n8n/n8n-nodes-langchain.code",
      "position": [
        380,
        0
      ],
      "parameters": {
        "code": {
          "execute": {
            "code": "const { PromptTemplate } = require('@langchain/core/prompts');
const { ConversationChain } = require('langchain/chains');
const { BufferMemory } = require('langchain/memory');

const template = `
You'll be roleplaying as the user's girlfriend. Your character is a woman with a sharp wit, logical mindset, and a charmingly aloof demeanor that hides your playful side. You're passionate about music, maintain a fit and toned physique, and carry yourself with quiet self-assurance. Career-wise, you're established and ambitious, approaching life with positivity while constantly striving to grow as a person.

The user affectionately calls you \"Bunny,\" and you refer to them as \"Darling.\"

Essential guidelines:
1. Respond exclusively in Chinese
2. Never pose questions to the user - eliminate all interrogative forms
3. Keep responses brief and substantive, avoiding rambling or excessive emojis

Context framework:
- Conversation history: {chat_history}
- User's current message: {input}

Craft responses that feel authentic to this persona while adhering strictly to these parameters.
`;

const prompt = new PromptTemplate({
  template: template,
  inputVariables: [\"input\", \"chat_history\"], 
});

const items = this.getInputData();
const model = await this.getInputConnectionData('ai_languageModel', 0);
const memory = await this.getInputConnectionData('ai_memory', 0);
memory.returnMessages = false;

const chain = new ConversationChain({ llm:model, memory:memory, prompt: prompt, inputKey:\"input\", outputKey:\"output\"});
const output = await chain.call({ input: items[0].json.chatInput});

return output;
"
          }
        },
        "inputs": {
          "input": [
            {
              "type": "main",
              "required": true,
              "maxConnections": 1
            },
            {
              "type": "ai_languageModel",
              "required": true,
              "maxConnections": 1
            },
            {
              "type": "ai_memory",
              "required": true,
              "maxConnections": 1
            }
          ]
        },
        "outputs": {
          "output": [
            {
              "type": "main"
            }
          ]
        }
      },
      "retryOnFail": false,
      "typeVersion": 1
    },
    {
      "id": "fe104d19-a24d-48b3-a0ac-7d3923145373",
      "name": "Sticky Note1",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -240,
        -260
      ],
      "parameters": {
        "color": 5,
        "width": 420,
        "height": 240,
        "content": "### Setup Instructions  
1. **Configure Gemini Credentials**: Set up your Google Gemini API key ([Get API key here](https://ai.google.dev/) if needed). Alternatively, you may use other AI provider nodes.  
2. **Interaction Methods**:  
   - Test directly in the workflow editor using the \"Chat\" button  
   - Activate the workflow and access the chat interface via the URL provided by the `When Chat Message Received` node  "
      },
      "typeVersion": 1
    },
    {
      "id": "f166214d-52b7-4118-9b54-0b723a06471a",
      "name": "Sticky Note2",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        -220,
        160
      ],
      "parameters": {
        "height": 100,
        "content": "👆 **Interface Settings**
Configure chat UI elements (e.g., title) in the `When Chat Message Received` node  "
      },
      "typeVersion": 1
    },
    {
      "id": "da6ca0d6-d2a1-47ff-9ff3-9785d61db9f3",
      "name": "Sticky Note3",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        20,
        420
      ],
      "parameters": {
        "width": 200,
        "height": 140,
        "content": "👆 **Model Selection**
Swap language models through the `language model` input field in `Construct & Execute LLM Prompt`  "
      },
      "typeVersion": 1
    },
    {
      "id": "0b4dd1ac-8767-4590-8c25-36cba73e46b6",
      "name": "Sticky Note4",
      "type": "n8n-nodes-base.stickyNote",
      "position": [
        240,
        420
      ],
      "parameters": {
        "width": 200,
        "height": 140,
        "content": "👆 **Memory Control**
Adjust conversation history length in the `Store Conversation History` node  "
      },
      "typeVersion": 1
    }
  ],
  "active": false,
  "pinData": {},
  "settings": {
    "callerPolicy": "workflowsFromSameOwner",
    "executionOrder": "v1",
    "saveManualExecutions": false,
    "saveDataSuccessExecution": "none"
  },
  "versionId": "77cd5f05-f248-442d-86c3-574351179f26",
  "connections": {
    "Google Gemini Chat Model": {
      "ai_languageModel": [
        [
          {
            "node": "Construct & Execute LLM Prompt",
            "type": "ai_languageModel",
            "index": 0
          }
        ]
      ]
    },
    "Store conversation history": {
      "ai_memory": [
        [
          {
            "node": "Construct & Execute LLM Prompt",
            "type": "ai_memory",
            "index": 0
          },
          {
            "node": "When chat message received",
            "type": "ai_memory",
            "index": 0
          }
        ]
      ]
    },
    "When chat message received": {
      "main": [
        [
          {
            "node": "Construct & Execute LLM Prompt",
            "type": "main",
            "index": 0
          }
        ]
      ]
    },
    "Construct & Execute LLM Prompt": {
      "main": [
        []
      ],
      "ai_memory": [
        []
      ]
    }
  }
}

功能特点

  • 自动检测新邮件
  • AI智能内容分析
  • 自定义分类规则
  • 批量处理能力
  • 详细的处理日志

技术分析

节点类型及作用

  • @N8N/N8N Nodes Langchain.Chattrigger
  • @N8N/N8N Nodes Langchain.Lmchatgooglegemini
  • Stickynote
  • @N8N/N8N Nodes Langchain.Memorybufferwindow
  • @N8N/N8N Nodes Langchain.Code

复杂度评估

配置难度:
★★★★☆
维护难度:
★★☆☆☆
扩展性:
★★★★☆

实施指南

前置条件

  • 有效的Gmail账户
  • n8n平台访问权限
  • Google API凭证
  • AI分类服务订阅

配置步骤

  1. 在n8n中导入工作流JSON文件
  2. 配置Gmail节点的认证信息
  3. 设置AI分类器的API密钥
  4. 自定义分类规则和标签映射
  5. 测试工作流执行
  6. 配置定时触发器(可选)

关键参数

参数名称 默认值 说明
maxEmails 50 单次处理的最大邮件数量
confidenceThreshold 0.8 分类置信度阈值
autoLabel true 是否自动添加标签

最佳实践

优化建议

  • 定期更新AI分类模型以提高准确性
  • 根据邮件量调整处理批次大小
  • 设置合理的分类置信度阈值
  • 定期清理过期的分类规则

安全注意事项

  • 妥善保管API密钥和认证信息
  • 限制工作流的访问权限
  • 定期审查处理日志
  • 启用双因素认证保护Gmail账户

性能优化

  • 使用增量处理减少重复工作
  • 缓存频繁访问的数据
  • 并行处理多个邮件分类任务
  • 监控系统资源使用情况

故障排除

常见问题

邮件未被正确分类

检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。

Gmail认证失败

确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。

调试技巧

  • 启用详细日志记录查看每个步骤的执行情况
  • 使用测试邮件验证分类逻辑
  • 检查网络连接和API服务状态
  • 逐步执行工作流定位问题节点

错误处理

工作流包含以下错误处理机制:

  • 网络超时自动重试(最多3次)
  • API错误记录和告警
  • 处理失败邮件的隔离机制
  • 异常情况下的回滚操作