Chat with local LLMs using n8n and Ollama
工作流概述
这是一个包含5个节点的中等工作流,主要用于自动化处理各种任务。
工作流源代码
{
"id": "af8RV5b2TWB2LclA",
"meta": {
"instanceId": "95f2ab28b3dabb8da5d47aa5145b95fe3845f47b20d6343dd5256b6a28ba8fab",
"templateCredsSetupCompleted": true
},
"name": "Chat with local LLMs using n8n and Ollama",
"tags": [],
"nodes": [
{
"id": "475385fa-28f3-45c4-bd1a-10dde79f74f2",
"name": "When chat message received",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
700,
460
],
"webhookId": "ebdeba3f-6b4f-49f3-ba0a-8253dd226161",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "61133dc6-dcd9-44ff-85f2-5d8cc2ce813e",
"name": "Ollama Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOllama",
"position": [
900,
680
],
"parameters": {
"options": {}
},
"credentials": {
"ollamaApi": {
"id": "MyYvr1tcNQ4e7M6l",
"name": "Local Ollama"
}
},
"typeVersion": 1
},
{
"id": "3e89571f-7c87-44c6-8cfd-4903d5e1cdc5",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
160,
80
],
"parameters": {
"width": 485,
"height": 473,
"content": "## Chat with local LLMs using n8n and Ollama
This n8n workflow allows you to seamlessly interact with your self-hosted Large Language Models (LLMs) through a user-friendly chat interface. By connecting to Ollama, a powerful tool for managing local LLMs, you can send prompts and receive AI-generated responses directly within n8n.
### How it works
1. When chat message received: Captures the user's input from the chat interface.
2. Chat LLM Chain: Sends the input to the Ollama server and receives the AI-generated response.
3. Delivers the LLM's response back to the chat interface.
### Set up steps
* Make sure Ollama is installed and running on your machine before executing this workflow.
* Edit the Ollama address if different from the default.
"
},
"typeVersion": 1
},
{
"id": "9345cadf-a72e-4d3d-b9f0-d670744065fe",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1040,
660
],
"parameters": {
"color": 6,
"width": 368,
"height": 258,
"content": "## Ollama setup
* Connect to your local Ollama, usually on http://localhost:11434
* If running in Docker, make sure that the n8n container has access to the host's network in order to connect to Ollama. You can do this by passing `--net=host` option when starting the n8n Docker container"
},
"typeVersion": 1
},
{
"id": "eeffdd4e-6795-4ebc-84f7-87b5ac4167d9",
"name": "Chat LLM Chain",
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"position": [
920,
460
],
"parameters": {},
"typeVersion": 1.4
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "3af03daa-e085-4774-8676-41578a4cba2d",
"connections": {
"Ollama Chat Model": {
"ai_languageModel": [
[
{
"node": "Chat LLM Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "Chat LLM Chain",
"type": "main",
"index": 0
}
]
]
}
}
}
功能特点
- 自动检测新邮件
- AI智能内容分析
- 自定义分类规则
- 批量处理能力
- 详细的处理日志
技术分析
节点类型及作用
- @N8N/N8N Nodes Langchain.Chattrigger
- @N8N/N8N Nodes Langchain.Lmchatollama
- Stickynote
- @N8N/N8N Nodes Langchain.Chainllm
复杂度评估
配置难度:
维护难度:
扩展性:
实施指南
前置条件
- 有效的Gmail账户
- n8n平台访问权限
- Google API凭证
- AI分类服务订阅
配置步骤
- 在n8n中导入工作流JSON文件
- 配置Gmail节点的认证信息
- 设置AI分类器的API密钥
- 自定义分类规则和标签映射
- 测试工作流执行
- 配置定时触发器(可选)
关键参数
| 参数名称 | 默认值 | 说明 |
|---|---|---|
| maxEmails | 50 | 单次处理的最大邮件数量 |
| confidenceThreshold | 0.8 | 分类置信度阈值 |
| autoLabel | true | 是否自动添加标签 |
最佳实践
优化建议
- 定期更新AI分类模型以提高准确性
- 根据邮件量调整处理批次大小
- 设置合理的分类置信度阈值
- 定期清理过期的分类规则
安全注意事项
- 妥善保管API密钥和认证信息
- 限制工作流的访问权限
- 定期审查处理日志
- 启用双因素认证保护Gmail账户
性能优化
- 使用增量处理减少重复工作
- 缓存频繁访问的数据
- 并行处理多个邮件分类任务
- 监控系统资源使用情况
故障排除
常见问题
邮件未被正确分类
检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。
Gmail认证失败
确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。
调试技巧
- 启用详细日志记录查看每个步骤的执行情况
- 使用测试邮件验证分类逻辑
- 检查网络连接和API服务状态
- 逐步执行工作流定位问题节点
错误处理
工作流包含以下错误处理机制:
- 网络超时自动重试(最多3次)
- API错误记录和告警
- 处理失败邮件的隔离机制
- 异常情况下的回滚操作