Use any LLM-Model via OpenRouter
工作流概述
这是一个包含8个节点的中等工作流,主要用于自动化处理各种任务。
工作流源代码
{
"id": "VhN3CX6QPBkX77pZ",
"meta": {
"instanceId": "98bf0d6aef1dd8b7a752798121440fb171bf7686b95727fd617f43452393daa3",
"templateCredsSetupCompleted": true
},
"name": "Use any LLM-Model via OpenRouter",
"tags": [
{
"id": "uumvgGHY5e6zEL7V",
"name": "Published Template",
"createdAt": "2025-02-10T11:18:10.923Z",
"updatedAt": "2025-02-10T11:18:10.923Z"
}
],
"nodes": [
{
"id": "b72721d2-bce7-458d-8ff1-cc9f6d099aaf",
"name": "Settings",
"type": "n8n-nodes-base.set",
"position": [
-420,
-640
],
"parameters": {
"options": {},
"assignments": {
"assignments": [
{
"id": "3d7f9677-c753-4126-b33a-d78ef701771f",
"name": "model",
"type": "string",
"value": "deepseek/deepseek-r1-distill-llama-8b"
},
{
"id": "301f86ec-260f-4d69-abd9-bde982e3e0aa",
"name": "prompt",
"type": "string",
"value": "={{ $json.chatInput }}"
},
{
"id": "a9f65181-902d-48f5-95ce-1352d391a056",
"name": "sessionId",
"type": "string",
"value": "={{ $json.sessionId }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "a4593d64-e67a-490e-9cb4-936cc46273a0",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-460,
-740
],
"parameters": {
"width": 180,
"height": 400,
"content": "## Settings
Specify the model"
},
"typeVersion": 1
},
{
"id": "3ea3b09a-0ab7-4e0f-bb4f-3d807d072d4e",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-240,
-740
],
"parameters": {
"color": 3,
"width": 380,
"height": 400,
"content": "## Run LLM
Using OpenRouter to make model fully configurable"
},
"typeVersion": 1
},
{
"id": "19d47fcb-af37-4daa-84fd-3f43ffcb90ff",
"name": "When chat message received",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
-660,
-640
],
"webhookId": "71f56e44-401f-44ba-b54d-c947e283d034",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "f5a793f2-1e2f-4349-a075-9b9171297277",
"name": "AI Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
-180,
-640
],
"parameters": {
"text": "={{ $json.prompt }}",
"options": {},
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "dbbd9746-ca25-4163-91c5-a9e33bff62a4",
"name": "Chat Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
-80,
-460
],
"parameters": {
"sessionKey": "={{ $json.sessionId }}",
"sessionIdType": "customKey"
},
"typeVersion": 1.3
},
{
"id": "ef368cea-1b38-455b-b46a-5d0ef7a3ceb3",
"name": "LLM Model",
"type": "@n8n/n8n-nodes-langchain.lmChatOpenAi",
"position": [
-200,
-460
],
"parameters": {
"model": "={{ $json.model }}",
"options": {}
},
"credentials": {
"openAiApi": {
"id": "66JEQJ5kJel1P9t3",
"name": "OpenRouter"
}
},
"typeVersion": 1.1
},
{
"id": "32601e76-0979-4690-8dcf-149ddbf61983",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-460,
-320
],
"parameters": {
"width": 600,
"height": 240,
"content": "## Model examples
* openai/o3-mini
* google/gemini-2.0-flash-001
* deepseek/deepseek-r1-distill-llama-8b
* mistralai/mistral-small-24b-instruct-2501:free
* qwen/qwen-turbo
For more see https://openrouter.ai/models"
},
"typeVersion": 1
}
],
"active": false,
"pinData": {},
"settings": {
"executionOrder": "v1"
},
"versionId": "6d0caf5d-d6e6-4059-9211-744b0f4bc204",
"connections": {
"Settings": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"LLM Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Chat Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "Settings",
"type": "main",
"index": 0
}
]
]
}
}
}
功能特点
- 自动检测新邮件
- AI智能内容分析
- 自定义分类规则
- 批量处理能力
- 详细的处理日志
技术分析
节点类型及作用
- Set
- Stickynote
- @N8N/N8N Nodes Langchain.Chattrigger
- @N8N/N8N Nodes Langchain.Agent
- @N8N/N8N Nodes Langchain.Memorybufferwindow
复杂度评估
配置难度:
维护难度:
扩展性:
实施指南
前置条件
- 有效的Gmail账户
- n8n平台访问权限
- Google API凭证
- AI分类服务订阅
配置步骤
- 在n8n中导入工作流JSON文件
- 配置Gmail节点的认证信息
- 设置AI分类器的API密钥
- 自定义分类规则和标签映射
- 测试工作流执行
- 配置定时触发器(可选)
关键参数
| 参数名称 | 默认值 | 说明 |
|---|---|---|
| maxEmails | 50 | 单次处理的最大邮件数量 |
| confidenceThreshold | 0.8 | 分类置信度阈值 |
| autoLabel | true | 是否自动添加标签 |
最佳实践
优化建议
- 定期更新AI分类模型以提高准确性
- 根据邮件量调整处理批次大小
- 设置合理的分类置信度阈值
- 定期清理过期的分类规则
安全注意事项
- 妥善保管API密钥和认证信息
- 限制工作流的访问权限
- 定期审查处理日志
- 启用双因素认证保护Gmail账户
性能优化
- 使用增量处理减少重复工作
- 缓存频繁访问的数据
- 并行处理多个邮件分类任务
- 监控系统资源使用情况
故障排除
常见问题
邮件未被正确分类
检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。
Gmail认证失败
确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。
调试技巧
- 启用详细日志记录查看每个步骤的执行情况
- 使用测试邮件验证分类逻辑
- 检查网络连接和API服务状态
- 逐步执行工作流定位问题节点
错误处理
工作流包含以下错误处理机制:
- 网络超时自动重试(最多3次)
- API错误记录和告警
- 处理失败邮件的隔离机制
- 异常情况下的回滚操作