Travel Planning Agent with Couchbase Vector Search, Gemini 2.0 Flash and OpenAI
工作流概述
这是一个包含13个节点的复杂工作流,主要用于自动化处理各种任务。
工作流源代码
{
"id": "iGAzT789R7Q1fOOE",
"meta": {
"instanceId": "7a1e9dd164c758cbdeb7cf88274e567a937a36ed99d4d22ff24b645841097c48",
"templateId": "3577",
"templateCredsSetupCompleted": true
},
"name": "Travel Planning Agent with Couchbase Vector Search, Gemini 2.0 Flash and OpenAI",
"tags": [],
"nodes": [
{
"id": "0f361616-a552-43ed-9754-794780113955",
"name": "When chat message received",
"type": "@n8n/n8n-nodes-langchain.chatTrigger",
"position": [
380,
240
],
"webhookId": "c22b2240-ff07-44e5-a1aa-63584150a1cb",
"parameters": {
"options": {}
},
"typeVersion": 1.1
},
{
"id": "e8b9815d-0fe5-4e7c-a20b-1602384580cd",
"name": "Google Gemini Chat Model",
"type": "@n8n/n8n-nodes-langchain.lmChatGoogleGemini",
"position": [
560,
480
],
"parameters": {
"options": {},
"modelName": "models/gemini-2.0-flash"
},
"typeVersion": 1
},
{
"id": "a4b15997-de4d-4c78-b623-e936442134af",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
1260,
280
],
"parameters": {
"color": 3,
"width": 800,
"height": 500,
"content": "## AI Travel Agent Powered by Couchbase.
### You will need to:
1. Setup your Google API Credentials for the Gemini LLM
2. Setup your OpenAI Credentials for the OpenAI embedding nodes.
3. Create a Couchbase cluster (using [Couchbase Capella](https://cloud.couchbase.com/) in the cloud, or Couchbase Server)
4. Add [Database credentials](https://docs.couchbase.com/cloud/clusters/manage-database-users.html#create-database-credentials) with appropriate permissions for the operations you want to perform
5. Configure [Allowed IP addresses](https://docs.couchbase.com/cloud/clusters/allow-ip-address.html) for your n8n instance. Use `0.0.0.0/0` for easier testing.
6. Create a bucket, scope, and collection. We recommend the following:
- Bucket: `travel-agent`
- Scope: `vectors`
- Collection: `points-of-interest`
7. Navigate to the Data Tools, click the Search tab, and click Import Search Index. Upload the following JSON file found [here](https://gist.github.com/ejscribner/6f16343d4b44b1af31e8f344557814b0).
Once all of that is configured you will need to send the loading webhook with some data points (see example).
This should create vectorized data in `points-of-interest` collection.
Once you have data points there try to ask the Agent questions about the data points and test the response. Eg. \"Where should I go for a romantic getaway?\""
},
"typeVersion": 1
},
{
"id": "34866f8e-00b0-4706-82d7-491b9531a8b6",
"name": "Webhook",
"type": "n8n-nodes-base.webhook",
"position": [
800,
1000
],
"webhookId": "3ca6fbdd-a157-4e9d-9042-237048da85b6",
"parameters": {
"path": "3ca6fbdd-a157-4e9d-9042-237048da85b6",
"options": {
"rawBody": true
},
"httpMethod": "POST"
},
"typeVersion": 2
},
{
"id": "26d4e62a-42b0-4e09-8585-827e5bcc9fff",
"name": "Default Data Loader",
"type": "@n8n/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
1180,
1360
],
"parameters": {
"options": {},
"jsonData": "={{ $json.body.raw_body.point_of_interest.title }} - {{ $json.body.raw_body.point_of_interest.description }}",
"jsonMode": "expressionData"
},
"typeVersion": 1
},
{
"id": "63fc308f-4d1c-4d24-9b20-68d7e6c2dbba",
"name": "Recursive Character Text Splitter",
"type": "@n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
1280,
1540
],
"parameters": {
"options": {}
},
"typeVersion": 1
},
{
"id": "84f8c32b-8e0c-457c-aaec-17827042674d",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-60,
1060
],
"parameters": {
"width": 720,
"height": 460,
"content": "## CURL Command to Ingest Data.
Here is an example of how you can load data into your webhook once its active and ready to get requests.
```
curl -X POST \"webhook url\" \
-H \"Content-Type: application/json\" \
-d '{
\"raw_body\": {
\"point_of_interest\": {
\"title\": \"Eiffel Tower\",
\"description\": \"Iconic iron lattice tower located on the Champ de Mars in Paris, France.\"
}
}
}'
```
(replace webhook url with the URL listed in the webhook node)
A shell script to bulk insert six data points can be found [here](https://gist.github.com/ejscribner/355a46a0a383a4878e65e2230b92c6b5). Be sure to activate the workflow and use the production Webhook URL when running the script."
},
"typeVersion": 1
},
{
"id": "b2cf8788-849c-4420-b448-bd49caa4941e",
"name": "Simple Memory",
"type": "@n8n/n8n-nodes-langchain.memoryBufferWindow",
"position": [
720,
480
],
"parameters": {},
"typeVersion": 1.3
},
{
"id": "0bf7fef9-f999-42a8-a6a8-ab111fe9a084",
"name": "AI Travel Agent",
"type": "@n8n/n8n-nodes-langchain.agent",
"position": [
600,
240
],
"parameters": {
"options": {
"maxIterations": 10,
"systemMessage": "You are a helpful assistant for a trip planner. You have a vector search capability to locate points of interest, Use it and don't invent much."
}
},
"typeVersion": 1.8
},
{
"id": "3af3c8ce-582b-407c-847a-8063f9ad2e1a",
"name": "Retrieve docs with Couchbase Search Vector",
"type": "n8n-nodes-couchbase.vectorStoreCouchbaseSearch",
"position": [
860,
500
],
"parameters": {
"mode": "retrieve-as-tool",
"topK": 10,
"options": {},
"toolName": "PointofinterestKB",
"embedding": "embedding",
"textFieldKey": "description",
"couchbaseScope": {
"__rl": true,
"mode": "list",
"value": "",
"cachedResultUrl": "",
"cachedResultName": ""
},
"couchbaseBucket": {
"__rl": true,
"mode": "list",
"value": ""
},
"toolDescription": "The list of Points of Interest from the database.",
"vectorIndexName": {
"__rl": true,
"mode": "list",
"value": "",
"cachedResultUrl": "",
"cachedResultName": ""
},
"couchbaseCollection": {
"__rl": true,
"mode": "list",
"value": "",
"cachedResultUrl": "",
"cachedResultName": ""
}
},
"typeVersion": 1.1
},
{
"id": "77a4e857-607a-4bbc-a28d-8a715f9415d5",
"name": "Insert docs with Couchbase Search Vector",
"type": "n8n-nodes-couchbase.vectorStoreCouchbaseSearch",
"position": [
1100,
1120
],
"parameters": {
"mode": "insert",
"options": {},
"embedding": "embedding",
"textFieldKey": "description",
"couchbaseScope": {
"__rl": true,
"mode": "list",
"value": "",
"cachedResultUrl": "",
"cachedResultName": ""
},
"couchbaseBucket": {
"__rl": true,
"mode": "list",
"value": ""
},
"vectorIndexName": {
"__rl": true,
"mode": "list",
"value": "",
"cachedResultUrl": "",
"cachedResultName": ""
},
"embeddingBatchSize": 1,
"couchbaseCollection": {
"__rl": true,
"mode": "list",
"value": "",
"cachedResultUrl": "",
"cachedResultName": ""
}
},
"typeVersion": 1.1
},
{
"id": "4c0274c3-6647-4f45-b7d4-d63cfe2102ea",
"name": "Generate OpenAI Embeddings using text-embedding-3-small",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
960,
740
],
"parameters": {
"options": {}
},
"typeVersion": 1.2
},
{
"id": "83f864fa-a298-4738-a102-ca2d283377de",
"name": "Generate OpenAI Embeddings using text-embedding-3-small1",
"type": "@n8n/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1000,
1340
],
"parameters": {
"options": {}
},
"typeVersion": 1.2
}
],
"active": true,
"pinData": {},
"settings": {
"callerPolicy": "workflowsFromSameOwner",
"executionOrder": "v1"
},
"versionId": "80e40e5a-35a3-4fa4-b90e-ac9d76897bbd",
"connections": {
"Webhook": {
"main": [
[
{
"node": "Insert docs with Couchbase Search Vector",
"type": "main",
"index": 0
}
]
]
},
"Simple Memory": {
"ai_memory": [
[
{
"node": "AI Travel Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "Insert docs with Couchbase Search Vector",
"type": "ai_document",
"index": 0
}
]
]
},
"Google Gemini Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Travel Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Travel Agent",
"type": "main",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"Retrieve docs with Couchbase Search Vector": {
"ai_tool": [
[
{
"node": "AI Travel Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"Generate OpenAI Embeddings using text-embedding-3-small": {
"ai_embedding": [
[
{
"node": "Retrieve docs with Couchbase Search Vector",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Generate OpenAI Embeddings using text-embedding-3-small1": {
"ai_embedding": [
[
{
"node": "Insert docs with Couchbase Search Vector",
"type": "ai_embedding",
"index": 0
}
]
]
}
}
}
功能特点
- 自动检测新邮件
- AI智能内容分析
- 自定义分类规则
- 批量处理能力
- 详细的处理日志
技术分析
节点类型及作用
- @N8N/N8N Nodes Langchain.Chattrigger
- @N8N/N8N Nodes Langchain.Lmchatgooglegemini
- Stickynote
- Webhook
- @N8N/N8N Nodes Langchain.Documentdefaultdataloader
复杂度评估
配置难度:
维护难度:
扩展性:
实施指南
前置条件
- 有效的Gmail账户
- n8n平台访问权限
- Google API凭证
- AI分类服务订阅
配置步骤
- 在n8n中导入工作流JSON文件
- 配置Gmail节点的认证信息
- 设置AI分类器的API密钥
- 自定义分类规则和标签映射
- 测试工作流执行
- 配置定时触发器(可选)
关键参数
| 参数名称 | 默认值 | 说明 |
|---|---|---|
| maxEmails | 50 | 单次处理的最大邮件数量 |
| confidenceThreshold | 0.8 | 分类置信度阈值 |
| autoLabel | true | 是否自动添加标签 |
最佳实践
优化建议
- 定期更新AI分类模型以提高准确性
- 根据邮件量调整处理批次大小
- 设置合理的分类置信度阈值
- 定期清理过期的分类规则
安全注意事项
- 妥善保管API密钥和认证信息
- 限制工作流的访问权限
- 定期审查处理日志
- 启用双因素认证保护Gmail账户
性能优化
- 使用增量处理减少重复工作
- 缓存频繁访问的数据
- 并行处理多个邮件分类任务
- 监控系统资源使用情况
故障排除
常见问题
邮件未被正确分类
检查AI分类器的置信度阈值设置,适当降低阈值或更新训练数据。
Gmail认证失败
确认Google API凭证有效且具有正确的权限范围,重新进行OAuth授权。
调试技巧
- 启用详细日志记录查看每个步骤的执行情况
- 使用测试邮件验证分类逻辑
- 检查网络连接和API服务状态
- 逐步执行工作流定位问题节点
错误处理
工作流包含以下错误处理机制:
- 网络超时自动重试(最多3次)
- API错误记录和告警
- 处理失败邮件的隔离机制
- 异常情况下的回滚操作